Wire Sysio Wire Sysion 1.0.0
Loading...
Searching...
No Matches
modinv64_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2020 Peter Dettman *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef SECP256K1_MODINV64_IMPL_H
8#define SECP256K1_MODINV64_IMPL_H
9
10#include "modinv64.h"
11
12#include "util.h"
13
14/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
15 * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
16 *
17 * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
18 * implementation for N=62, using 62-bit signed limbs represented as int64_t.
19 */
20
21#ifdef VERIFY
22/* Helper function to compute the absolute value of an int64_t.
23 * (we don't use abs/labs/llabs as it depends on the int sizes). */
24static int64_t secp256k1_modinv64_abs(int64_t v) {
26 if (v < 0) return -v;
27 return v;
28}
29
30static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
31
32/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
33static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) {
34 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
35 int128_t c = 0;
36 int i;
37 for (i = 0; i < 4; ++i) {
38 if (i < alen) c += (int128_t)a->v[i] * factor;
39 r->v[i] = (int64_t)c & M62; c >>= 62;
40 }
41 if (4 < alen) c += (int128_t)a->v[4] * factor;
42 VERIFY_CHECK(c == (int64_t)c);
43 r->v[4] = (int64_t)c;
44}
45
46/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
47static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) {
48 int i;
50 secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
51 secp256k1_modinv64_mul_62(&bm, b, 5, factor);
52 for (i = 0; i < 4; ++i) {
53 /* Verify that all but the top limb of a and b are normalized. */
54 VERIFY_CHECK(am.v[i] >> 62 == 0);
55 VERIFY_CHECK(bm.v[i] >> 62 == 0);
56 }
57 for (i = 4; i >= 0; --i) {
58 if (am.v[i] < bm.v[i]) return -1;
59 if (am.v[i] > bm.v[i]) return 1;
60 }
61 return 0;
62}
63#endif
64
65/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
66 * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
67 * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
68 * [0,2^62). */
69static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
70 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
71 int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
72 int64_t cond_add, cond_negate;
73
74#ifdef VERIFY
75 /* Verify that all limbs are in range (-2^62,2^62). */
76 int i;
77 for (i = 0; i < 5; ++i) {
78 VERIFY_CHECK(r->v[i] >= -M62);
79 VERIFY_CHECK(r->v[i] <= M62);
80 }
81 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
82 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
83#endif
84
85 /* In a first step, add the modulus if the input is negative, and then negate if requested.
86 * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
87 * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
88 * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
89 * indeed the behavior of the right shift operator). */
90 cond_add = r4 >> 63;
91 r0 += modinfo->modulus.v[0] & cond_add;
92 r1 += modinfo->modulus.v[1] & cond_add;
93 r2 += modinfo->modulus.v[2] & cond_add;
94 r3 += modinfo->modulus.v[3] & cond_add;
95 r4 += modinfo->modulus.v[4] & cond_add;
96 cond_negate = sign >> 63;
97 r0 = (r0 ^ cond_negate) - cond_negate;
98 r1 = (r1 ^ cond_negate) - cond_negate;
99 r2 = (r2 ^ cond_negate) - cond_negate;
100 r3 = (r3 ^ cond_negate) - cond_negate;
101 r4 = (r4 ^ cond_negate) - cond_negate;
102 /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
103 r1 += r0 >> 62; r0 &= M62;
104 r2 += r1 >> 62; r1 &= M62;
105 r3 += r2 >> 62; r2 &= M62;
106 r4 += r3 >> 62; r3 &= M62;
107
108 /* In a second step add the modulus again if the result is still negative, bringing
109 * r to range [0,modulus). */
110 cond_add = r4 >> 63;
111 r0 += modinfo->modulus.v[0] & cond_add;
112 r1 += modinfo->modulus.v[1] & cond_add;
113 r2 += modinfo->modulus.v[2] & cond_add;
114 r3 += modinfo->modulus.v[3] & cond_add;
115 r4 += modinfo->modulus.v[4] & cond_add;
116 /* And propagate again. */
117 r1 += r0 >> 62; r0 &= M62;
118 r2 += r1 >> 62; r1 &= M62;
119 r3 += r2 >> 62; r2 &= M62;
120 r4 += r3 >> 62; r3 &= M62;
121
122 r->v[0] = r0;
123 r->v[1] = r1;
124 r->v[2] = r2;
125 r->v[3] = r3;
126 r->v[4] = r4;
127
128#ifdef VERIFY
129 VERIFY_CHECK(r0 >> 62 == 0);
130 VERIFY_CHECK(r1 >> 62 == 0);
131 VERIFY_CHECK(r2 >> 62 == 0);
132 VERIFY_CHECK(r3 >> 62 == 0);
133 VERIFY_CHECK(r4 >> 62 == 0);
134 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
135 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
136#endif
137}
138
139/* Data type for transition matrices (see section 3 of explanation).
140 *
141 * t = [ u v ]
142 * [ q r ]
143 */
144typedef struct {
145 int64_t u, v, q, r;
147
148/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
149 * Note that the transformation matrix is scaled by 2^62 and not 2^59.
150 *
151 * Input: zeta: initial zeta
152 * f0: bottom limb of initial f
153 * g0: bottom limb of initial g
154 * Output: t: transition matrix
155 * Return: final zeta
156 *
157 * Implements the divsteps_n_matrix function from the explanation.
158 */
159static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
160 /* u,v,q,r are the elements of the transformation matrix being built up,
161 * starting with the identity matrix times 8 (because the caller expects
162 * a result scaled by 2^62). Semantically they are signed integers
163 * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
164 * permits left shifting (which is UB for negative numbers). The range
165 * being inside [-2^63,2^63) means that casting to signed works correctly.
166 */
167 uint64_t u = 8, v = 0, q = 0, r = 8;
168 uint64_t c1, c2, f = f0, g = g0, x, y, z;
169 int i;
170
171 for (i = 3; i < 62; ++i) {
172 VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
173 VERIFY_CHECK((u * f0 + v * g0) == f << i);
174 VERIFY_CHECK((q * f0 + r * g0) == g << i);
175 /* Compute conditional masks for (zeta < 0) and for (g & 1). */
176 c1 = zeta >> 63;
177 c2 = -(g & 1);
178 /* Compute x,y,z, conditionally negated versions of f,u,v. */
179 x = (f ^ c1) - c1;
180 y = (u ^ c1) - c1;
181 z = (v ^ c1) - c1;
182 /* Conditionally add x,y,z to g,q,r. */
183 g += x & c2;
184 q += y & c2;
185 r += z & c2;
186 /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
187 c1 &= c2;
188 /* Conditionally change zeta into -zeta-2 or zeta-1. */
189 zeta = (zeta ^ c1) - 1;
190 /* Conditionally add g,q,r to f,u,v. */
191 f += g & c1;
192 u += q & c1;
193 v += r & c1;
194 /* Shifts */
195 g >>= 1;
196 u <<= 1;
197 v <<= 1;
198 /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
199 VERIFY_CHECK(zeta >= -591 && zeta <= 591);
200 }
201 /* Return data in t and return value. */
202 t->u = (int64_t)u;
203 t->v = (int64_t)v;
204 t->q = (int64_t)q;
205 t->r = (int64_t)r;
206 /* The determinant of t must be a power of two. This guarantees that multiplication with t
207 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
208 * will be divided out again). As each divstep's individual matrix has determinant 2, the
209 * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
210 * 8*identity (which has determinant 2^6) means the overall outputs has determinant
211 * 2^65. */
212 VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 65);
213 return zeta;
214}
215
216/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
217 *
218 * Input: eta: initial eta
219 * f0: bottom limb of initial f
220 * g0: bottom limb of initial g
221 * Output: t: transition matrix
222 * Return: final eta
223 *
224 * Implements the divsteps_n_matrix_var function from the explanation.
225 */
226static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
227 /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
228 uint64_t u = 1, v = 0, q = 0, r = 1;
229 uint64_t f = f0, g = g0, m;
230 uint32_t w;
231 int i = 62, limit, zeros;
232
233 for (;;) {
234 /* Use a sentinel bit to count zeros only up to i. */
235 zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
236 /* Perform zeros divsteps at once; they all just divide g by two. */
237 g >>= zeros;
238 u <<= zeros;
239 v <<= zeros;
240 eta -= zeros;
241 i -= zeros;
242 /* We're done once we've done 62 divsteps. */
243 if (i == 0) break;
244 VERIFY_CHECK((f & 1) == 1);
245 VERIFY_CHECK((g & 1) == 1);
246 VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
247 VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
248 /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
249 VERIFY_CHECK(eta >= -745 && eta <= 745);
250 /* If eta is negative, negate it and replace f,g with g,-f. */
251 if (eta < 0) {
252 uint64_t tmp;
253 eta = -eta;
254 tmp = f; f = g; g = -tmp;
255 tmp = u; u = q; q = -tmp;
256 tmp = v; v = r; r = -tmp;
257 /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
258 * out (as we'd be done before that point), and no more than eta+1 can be done as its
259 * will flip again once that happens. */
260 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
261 VERIFY_CHECK(limit > 0 && limit <= 62);
262 /* m is a mask for the bottom min(limit, 6) bits. */
263 m = (UINT64_MAX >> (64 - limit)) & 63U;
264 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
265 * bits. */
266 w = (f * g * (f * f - 2)) & m;
267 } else {
268 /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
269 * eta tends to be smaller here. */
270 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
271 VERIFY_CHECK(limit > 0 && limit <= 62);
272 /* m is a mask for the bottom min(limit, 4) bits. */
273 m = (UINT64_MAX >> (64 - limit)) & 15U;
274 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
275 * bits. */
276 w = f + (((f + 1) & 4) << 1);
277 w = (-w * g) & m;
278 }
279 g += f * w;
280 q += u * w;
281 r += v * w;
282 VERIFY_CHECK((g & m) == 0);
283 }
284 /* Return data in t and return value. */
285 t->u = (int64_t)u;
286 t->v = (int64_t)v;
287 t->q = (int64_t)q;
288 t->r = (int64_t)r;
289 /* The determinant of t must be a power of two. This guarantees that multiplication with t
290 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
291 * will be divided out again). As each divstep's individual matrix has determinant 2, the
292 * aggregate of 62 of them will have determinant 2^62. */
293 VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
294 return eta;
295}
296
297/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
298 *
299 * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
300 * (-2^62,2^62).
301 *
302 * This implements the update_de function from the explanation.
303 */
304static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) {
305 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
306 const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
307 const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
308 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
309 int64_t md, me, sd, se;
310 int128_t cd, ce;
311#ifdef VERIFY
312 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
313 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
314 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
315 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
316 VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) >= 0); /* |u|+|v| doesn't overflow */
317 VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) >= 0); /* |q|+|r| doesn't overflow */
318 VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) <= M62 + 1); /* |u|+|v| <= 2^62 */
319 VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) <= M62 + 1); /* |q|+|r| <= 2^62 */
320#endif
321 /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
322 sd = d4 >> 63;
323 se = e4 >> 63;
324 md = (u & sd) + (v & se);
325 me = (q & sd) + (r & se);
326 /* Begin computing t*[d,e]. */
327 cd = (int128_t)u * d0 + (int128_t)v * e0;
328 ce = (int128_t)q * d0 + (int128_t)r * e0;
329 /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
330 md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62;
331 me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62;
332 /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
333 cd += (int128_t)modinfo->modulus.v[0] * md;
334 ce += (int128_t)modinfo->modulus.v[0] * me;
335 /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
336 VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62;
337 VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62;
338 /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
339 cd += (int128_t)u * d1 + (int128_t)v * e1;
340 ce += (int128_t)q * d1 + (int128_t)r * e1;
341 if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
342 cd += (int128_t)modinfo->modulus.v[1] * md;
343 ce += (int128_t)modinfo->modulus.v[1] * me;
344 }
345 d->v[0] = (int64_t)cd & M62; cd >>= 62;
346 e->v[0] = (int64_t)ce & M62; ce >>= 62;
347 /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
348 cd += (int128_t)u * d2 + (int128_t)v * e2;
349 ce += (int128_t)q * d2 + (int128_t)r * e2;
350 if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
351 cd += (int128_t)modinfo->modulus.v[2] * md;
352 ce += (int128_t)modinfo->modulus.v[2] * me;
353 }
354 d->v[1] = (int64_t)cd & M62; cd >>= 62;
355 e->v[1] = (int64_t)ce & M62; ce >>= 62;
356 /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
357 cd += (int128_t)u * d3 + (int128_t)v * e3;
358 ce += (int128_t)q * d3 + (int128_t)r * e3;
359 if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
360 cd += (int128_t)modinfo->modulus.v[3] * md;
361 ce += (int128_t)modinfo->modulus.v[3] * me;
362 }
363 d->v[2] = (int64_t)cd & M62; cd >>= 62;
364 e->v[2] = (int64_t)ce & M62; ce >>= 62;
365 /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
366 cd += (int128_t)u * d4 + (int128_t)v * e4;
367 ce += (int128_t)q * d4 + (int128_t)r * e4;
368 cd += (int128_t)modinfo->modulus.v[4] * md;
369 ce += (int128_t)modinfo->modulus.v[4] * me;
370 d->v[3] = (int64_t)cd & M62; cd >>= 62;
371 e->v[3] = (int64_t)ce & M62; ce >>= 62;
372 /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
373 d->v[4] = (int64_t)cd;
374 e->v[4] = (int64_t)ce;
375#ifdef VERIFY
376 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
377 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
378 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
379 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
380#endif
381}
382
383/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
384 *
385 * This implements the update_fg function from the explanation.
386 */
387static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
388 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
389 const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
390 const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
391 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
392 int128_t cf, cg;
393 /* Start computing t*[f,g]. */
394 cf = (int128_t)u * f0 + (int128_t)v * g0;
395 cg = (int128_t)q * f0 + (int128_t)r * g0;
396 /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
397 VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
398 VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
399 /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
400 cf += (int128_t)u * f1 + (int128_t)v * g1;
401 cg += (int128_t)q * f1 + (int128_t)r * g1;
402 f->v[0] = (int64_t)cf & M62; cf >>= 62;
403 g->v[0] = (int64_t)cg & M62; cg >>= 62;
404 /* Compute limb 2 of t*[f,g], and store it as output limb 1. */
405 cf += (int128_t)u * f2 + (int128_t)v * g2;
406 cg += (int128_t)q * f2 + (int128_t)r * g2;
407 f->v[1] = (int64_t)cf & M62; cf >>= 62;
408 g->v[1] = (int64_t)cg & M62; cg >>= 62;
409 /* Compute limb 3 of t*[f,g], and store it as output limb 2. */
410 cf += (int128_t)u * f3 + (int128_t)v * g3;
411 cg += (int128_t)q * f3 + (int128_t)r * g3;
412 f->v[2] = (int64_t)cf & M62; cf >>= 62;
413 g->v[2] = (int64_t)cg & M62; cg >>= 62;
414 /* Compute limb 4 of t*[f,g], and store it as output limb 3. */
415 cf += (int128_t)u * f4 + (int128_t)v * g4;
416 cg += (int128_t)q * f4 + (int128_t)r * g4;
417 f->v[3] = (int64_t)cf & M62; cf >>= 62;
418 g->v[3] = (int64_t)cg & M62; cg >>= 62;
419 /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
420 f->v[4] = (int64_t)cf;
421 g->v[4] = (int64_t)cg;
422}
423
424/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
425 *
426 * Version that operates on a variable number of limbs in f and g.
427 *
428 * This implements the update_fg function from the explanation.
429 */
430static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
431 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
432 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
433 int64_t fi, gi;
434 int128_t cf, cg;
435 int i;
436 VERIFY_CHECK(len > 0);
437 /* Start computing t*[f,g]. */
438 fi = f->v[0];
439 gi = g->v[0];
440 cf = (int128_t)u * fi + (int128_t)v * gi;
441 cg = (int128_t)q * fi + (int128_t)r * gi;
442 /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
443 VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
444 VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
445 /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
446 * down by 62 bits). */
447 for (i = 1; i < len; ++i) {
448 fi = f->v[i];
449 gi = g->v[i];
450 cf += (int128_t)u * fi + (int128_t)v * gi;
451 cg += (int128_t)q * fi + (int128_t)r * gi;
452 f->v[i - 1] = (int64_t)cf & M62; cf >>= 62;
453 g->v[i - 1] = (int64_t)cg & M62; cg >>= 62;
454 }
455 /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
456 f->v[len - 1] = (int64_t)cf;
457 g->v[len - 1] = (int64_t)cg;
458}
459
460/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
461static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
462 /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
463 secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
464 secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
467 int i;
468 int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
469
470 /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
471 for (i = 0; i < 10; ++i) {
472 /* Compute transition matrix and new zeta after 59 divsteps. */
474 zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
475 /* Update d,e using that transition matrix. */
476 secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
477 /* Update f,g using that transition matrix. */
478#ifdef VERIFY
479 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
480 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
481 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
482 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
483#endif
484 secp256k1_modinv64_update_fg_62(&f, &g, &t);
485#ifdef VERIFY
486 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
487 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
488 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
489 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
490#endif
491 }
492
493 /* At this point sufficient iterations have been performed that g must have reached 0
494 * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
495 * values i.e. +/- 1, and d now contains +/- the modular inverse. */
496#ifdef VERIFY
497 /* g == 0 */
498 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
499 /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
500 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
501 secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
502 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
503 secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
504 (secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
505 secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
506#endif
507
508 /* Optionally negate d, normalize to [0,modulus), and return it. */
509 secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
510 *x = d;
511}
512
513/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
514static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
515 /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
516 secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
517 secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
520#ifdef VERIFY
521 int i = 0;
522#endif
523 int j, len = 5;
524 int64_t eta = -1; /* eta = -delta; delta is initially 1 */
525 int64_t cond, fn, gn;
526
527 /* Do iterations of 62 divsteps each until g=0. */
528 while (1) {
529 /* Compute transition matrix and new eta after 62 divsteps. */
531 eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
532 /* Update d,e using that transition matrix. */
533 secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
534 /* Update f,g using that transition matrix. */
535#ifdef VERIFY
536 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
537 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
538 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
539 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
540#endif
541 secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
542 /* If the bottom limb of g is zero, there is a chance that g=0. */
543 if (g.v[0] == 0) {
544 cond = 0;
545 /* Check if the other limbs are also 0. */
546 for (j = 1; j < len; ++j) {
547 cond |= g.v[j];
548 }
549 /* If so, we're done. */
550 if (cond == 0) break;
551 }
552
553 /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
554 fn = f.v[len - 1];
555 gn = g.v[len - 1];
556 cond = ((int64_t)len - 2) >> 63;
557 cond |= fn ^ (fn >> 63);
558 cond |= gn ^ (gn >> 63);
559 /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
560 if (cond == 0) {
561 f.v[len - 2] |= (uint64_t)fn << 62;
562 g.v[len - 2] |= (uint64_t)gn << 62;
563 --len;
564 }
565#ifdef VERIFY
566 VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
567 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
568 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
569 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
570 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
571#endif
572 }
573
574 /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
575 * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
576#ifdef VERIFY
577 /* g == 0 */
578 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
579 /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
580 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
581 secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
582 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
583 secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
584 (secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
585 secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
586#endif
587
588 /* Optionally negate d, normalize to [0,modulus), and return it. */
589 secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
590 *x = d;
591}
592
593#endif /* SECP256K1_MODINV64_IMPL_H */
const mie::Vuint & r
Definition bn.cpp:28
#define d1
#define d0
#define VERIFY_CHECK(cond)
Definition util.h:95
const T1 const T2 const T3 & f3
const T1 const T2 & f2
const T1 & f1
const T1 const T2 const T3 const T4 & f4
__int128 int128_t
Definition types.hpp:241
const GenericPointer< typename T::ValueType > T2 T::AllocatorType & a
Definition pointer.h:1181
#define UINT64_MAX
Definition stdint.h:189
signed __int64 int64_t
Definition stdint.h:135
unsigned int uint32_t
Definition stdint.h:126
#define INT64_MIN
Definition stdint.h:184
unsigned __int64 uint64_t
Definition stdint.h:136
secp256k1_modinv64_signed62 modulus
Definition modinv64.h:29
CK_ULONG d
uint16_t j
size_t len