Wire Sysio Wire Sysion 1.0.0
Loading...
Searching...
No Matches
testrand_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013-2015 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_TESTRAND_IMPL_H
8#define SECP256K1_TESTRAND_IMPL_H
9
10#include <stdint.h>
11#include <stdio.h>
12#include <string.h>
13
14#include "testrand.h"
15#include "hash.h"
16
17static uint64_t secp256k1_test_state[4];
18static uint64_t secp256k1_test_rng_integer;
19static int secp256k1_test_rng_integer_bits_left = 0;
20
21SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16) {
22 static const unsigned char PREFIX[19] = "secp256k1 test init";
23 unsigned char out32[32];
25 int i;
26
27 /* Use SHA256(PREFIX || seed16) as initial state. */
28 secp256k1_sha256_initialize(&hash);
29 secp256k1_sha256_write(&hash, PREFIX, sizeof(PREFIX));
30 secp256k1_sha256_write(&hash, seed16, 16);
31 secp256k1_sha256_finalize(&hash, out32);
32 for (i = 0; i < 4; ++i) {
33 uint64_t s = 0;
34 int j;
35 for (j = 0; j < 8; ++j) s = (s << 8) | out32[8*i + j];
36 secp256k1_test_state[i] = s;
37 }
38 secp256k1_test_rng_integer_bits_left = 0;
39}
40
41SECP256K1_INLINE static uint64_t rotl(const uint64_t x, int k) {
42 return (x << k) | (x >> (64 - k));
43}
44
45SECP256K1_INLINE static uint64_t secp256k1_testrand64(void) {
46 /* Test-only Xoshiro256++ RNG. See https://prng.di.unimi.it/ */
47 const uint64_t result = rotl(secp256k1_test_state[0] + secp256k1_test_state[3], 23) + secp256k1_test_state[0];
48 const uint64_t t = secp256k1_test_state[1] << 17;
49 secp256k1_test_state[2] ^= secp256k1_test_state[0];
50 secp256k1_test_state[3] ^= secp256k1_test_state[1];
51 secp256k1_test_state[1] ^= secp256k1_test_state[2];
52 secp256k1_test_state[0] ^= secp256k1_test_state[3];
53 secp256k1_test_state[2] ^= t;
54 secp256k1_test_state[3] = rotl(secp256k1_test_state[3], 45);
55 return result;
56}
57
58SECP256K1_INLINE static uint64_t secp256k1_testrand_bits(int bits) {
60 if (secp256k1_test_rng_integer_bits_left < bits) {
61 secp256k1_test_rng_integer = secp256k1_testrand64();
62 secp256k1_test_rng_integer_bits_left = 64;
63 }
64 ret = secp256k1_test_rng_integer;
65 secp256k1_test_rng_integer >>= bits;
66 secp256k1_test_rng_integer_bits_left -= bits;
67 ret &= ((~((uint64_t)0)) >> (64 - bits));
68 return ret;
69}
70
71SECP256K1_INLINE static uint32_t secp256k1_testrand32(void) {
72 return secp256k1_testrand_bits(32);
73}
74
75static uint32_t secp256k1_testrand_int(uint32_t range) {
76 /* We want a uniform integer between 0 and range-1, inclusive.
77 * B is the smallest number such that range <= 2**B.
78 * two mechanisms implemented here:
79 * - generate B bits numbers until one below range is found, and return it
80 * - find the largest multiple M of range that is <= 2**(B+A), generate B+A
81 * bits numbers until one below M is found, and return it modulo range
82 * The second mechanism consumes A more bits of entropy in every iteration,
83 * but may need fewer iterations due to M being closer to 2**(B+A) then
84 * range is to 2**B. The array below (indexed by B) contains a 0 when the
85 * first mechanism is to be used, and the number A otherwise.
86 */
87 static const int addbits[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0};
88 uint32_t trange, mult;
89 int bits = 0;
90 if (range <= 1) {
91 return 0;
92 }
93 trange = range - 1;
94 while (trange > 0) {
95 trange >>= 1;
96 bits++;
97 }
98 if (addbits[bits]) {
99 bits = bits + addbits[bits];
100 mult = ((~((uint32_t)0)) >> (32 - bits)) / range;
101 trange = range * mult;
102 } else {
103 trange = range;
104 mult = 1;
105 }
106 while(1) {
107 uint32_t x = secp256k1_testrand_bits(bits);
108 if (x < trange) {
109 return (mult == 1) ? x : (x % range);
110 }
111 }
112}
113
114static void secp256k1_testrand256(unsigned char *b32) {
115 int i;
116 for (i = 0; i < 4; ++i) {
117 uint64_t val = secp256k1_testrand64();
118 b32[0] = val;
119 b32[1] = val >> 8;
120 b32[2] = val >> 16;
121 b32[3] = val >> 24;
122 b32[4] = val >> 32;
123 b32[5] = val >> 40;
124 b32[6] = val >> 48;
125 b32[7] = val >> 56;
126 b32 += 8;
127 }
128}
129
130static void secp256k1_testrand_bytes_test(unsigned char *bytes, size_t len) {
131 size_t bits = 0;
132 memset(bytes, 0, len);
133 while (bits < len * 8) {
134 int now;
135 uint32_t val;
136 now = 1 + (secp256k1_testrand_bits(6) * secp256k1_testrand_bits(5) + 16) / 31;
137 val = secp256k1_testrand_bits(1);
138 while (now > 0 && bits < len * 8) {
139 bytes[bits / 8] |= val << (bits % 8);
140 now--;
141 bits++;
142 }
143 }
144}
145
146static void secp256k1_testrand256_test(unsigned char *b32) {
147 secp256k1_testrand_bytes_test(b32, 32);
148}
149
150static void secp256k1_testrand_flip(unsigned char *b, size_t len) {
151 b[secp256k1_testrand_int(len)] ^= (1 << secp256k1_testrand_bits(3));
152}
153
154static void secp256k1_testrand_init(const char* hexseed) {
155 unsigned char seed16[16] = {0};
156 if (hexseed && strlen(hexseed) != 0) {
157 int pos = 0;
158 while (pos < 16 && hexseed[0] != 0 && hexseed[1] != 0) {
159 unsigned short sh;
160 if ((sscanf(hexseed, "%2hx", &sh)) == 1) {
161 seed16[pos] = sh;
162 } else {
163 break;
164 }
165 hexseed += 2;
166 pos++;
167 }
168 } else {
169 FILE *frand = fopen("/dev/urandom", "rb");
170 if ((frand == NULL) || fread(&seed16, 1, sizeof(seed16), frand) != sizeof(seed16)) {
171 uint64_t t = time(NULL) * (uint64_t)1337;
172 fprintf(stderr, "WARNING: could not read 16 bytes from /dev/urandom; falling back to insecure PRNG\n");
173 seed16[0] ^= t;
174 seed16[1] ^= t >> 8;
175 seed16[2] ^= t >> 16;
176 seed16[3] ^= t >> 24;
177 seed16[4] ^= t >> 32;
178 seed16[5] ^= t >> 40;
179 seed16[6] ^= t >> 48;
180 seed16[7] ^= t >> 56;
181 }
182 if (frand) {
183 fclose(frand);
184 }
185 }
186
187 printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
188 secp256k1_testrand_seed(seed16);
189}
190
191static void secp256k1_testrand_finish(void) {
192 unsigned char run32[32];
193 secp256k1_testrand256(run32);
194 printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);
195}
196
197#endif /* SECP256K1_TESTRAND_IMPL_H */
LOGGING_API void printf(Category category, const char *format,...)
Definition Logging.cpp:30
vector< char > bytes
Definition types.hpp:243
#define SECP256K1_INLINE
Definition secp256k1.h:127
unsigned int uint32_t
Definition stdint.h:126
unsigned __int64 uint64_t
Definition stdint.h:136
CK_RV ret
char * s
uint16_t j
size_t len
memset(pInfo->slotDescription, ' ', 64)