Wire Sysio Wire Sysion 1.0.0
Loading...
Searching...
No Matches
schnorr.c
Go to the documentation of this file.
1/*************************************************************************
2 * Written in 2020-2022 by Elichai Turkel *
3 * To the extent possible under law, the author(s) have dedicated all *
4 * copyright and related and neighboring rights to the software in this *
5 * file to the public domain worldwide. This software is distributed *
6 * without any warranty. For the CC0 Public Domain Dedication, see *
7 * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
8 *************************************************************************/
9
10#include <stdio.h>
11#include <assert.h>
12#include <string.h>
13
14#include <secp256k1.h>
15#include <secp256k1_extrakeys.h>
17
18#include "random.h"
19
20int main(void) {
21 unsigned char msg[12] = "Hello World!";
22 unsigned char msg_hash[32];
23 unsigned char tag[17] = "my_fancy_protocol";
24 unsigned char seckey[32];
25 unsigned char randomize[32];
26 unsigned char auxiliary_rand[32];
27 unsigned char serialized_pubkey[32];
28 unsigned char signature[64];
29 int is_signature_valid;
30 int return_val;
32 secp256k1_keypair keypair;
33 /* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create`
34 * needs a context object initialized for signing. And in secp256k1_schnorrsig.h
35 * they state that `secp256k1_schnorrsig_verify` needs a context initialized for
36 * verification, which is why we create a context for both signing and verification
37 * with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */
39 if (!fill_random(randomize, sizeof(randomize))) {
40 printf("Failed to generate randomness\n");
41 return 1;
42 }
43 /* Randomizing the context is recommended to protect against side-channel
44 * leakage See `secp256k1_context_randomize` in secp256k1.h for more
45 * information about it. This should never fail. */
46 return_val = secp256k1_context_randomize(ctx, randomize);
47 assert(return_val);
48
49 /*** Key Generation ***/
50
51 /* If the secret key is zero or out of range (bigger than secp256k1's
52 * order), we try to sample a new key. Note that the probability of this
53 * happening is negligible. */
54 while (1) {
55 if (!fill_random(seckey, sizeof(seckey))) {
56 printf("Failed to generate randomness\n");
57 return 1;
58 }
59 /* Try to create a keypair with a valid context, it should only fail if
60 * the secret key is zero or out of range. */
61 if (secp256k1_keypair_create(ctx, &keypair, seckey)) {
62 break;
63 }
64 }
65
66 /* Extract the X-only public key from the keypair. We pass NULL for
67 * `pk_parity` as the parity isn't needed for signing or verification.
68 * `secp256k1_keypair_xonly_pub` supports returning the parity for
69 * other use cases such as tests or verifying Taproot tweaks.
70 * This should never fail with a valid context and public key. */
71 return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
72 assert(return_val);
73
74 /* Serialize the public key. Should always return 1 for a valid public key. */
75 return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
76 assert(return_val);
77
78 /*** Signing ***/
79
80 /* Instead of signing (possibly very long) messages directly, we sign a
81 * 32-byte hash of the message in this example.
82 *
83 * We use secp256k1_tagged_sha256 to create this hash. This function expects
84 * a context-specific "tag", which restricts the context in which the signed
85 * messages should be considered valid. For example, if protocol A mandates
86 * to use the tag "my_fancy_protocol" and protocol B mandates to use the tag
87 * "my_boring_protocol", then signed messages from protocol A will never be
88 * valid in protocol B (and vice versa), even if keys are reused across
89 * protocols. This implements "domain separation", which is considered good
90 * practice. It avoids attacks in which users are tricked into signing a
91 * message that has intended consequences in the intended context (e.g.,
92 * protocol A) but would have unintended consequences if it were valid in
93 * some other context (e.g., protocol B). */
94 return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
95 assert(return_val);
96
97 /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
98 if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
99 printf("Failed to generate randomness\n");
100 return 1;
101 }
102
103 /* Generate a Schnorr signature.
104 *
105 * We use the secp256k1_schnorrsig_sign32 function that provides a simple
106 * interface for signing 32-byte messages (which in our case is a hash of
107 * the actual message). BIP-340 recommends passing 32 bytes of randomness
108 * to the signing function to improve security against side-channel attacks.
109 * Signing with a valid context, a 32-byte message, a verified keypair, and
110 * any 32 bytes of auxiliary random data should never fail. */
111 return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand);
112 assert(return_val);
113
114 /*** Verification ***/
115
116 /* Deserialize the public key. This will return 0 if the public key can't
117 * be parsed correctly */
118 if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
119 printf("Failed parsing the public key\n");
120 return 1;
121 }
122
123 /* Compute the tagged hash on the received messages using the same tag as the signer. */
124 return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
125 assert(return_val);
126
127 /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
128 is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);
129
130
131 printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
132 printf("Secret Key: ");
133 print_hex(seckey, sizeof(seckey));
134 printf("Public Key: ");
135 print_hex(serialized_pubkey, sizeof(serialized_pubkey));
136 printf("Signature: ");
137 print_hex(signature, sizeof(signature));
138
139 /* This will clear everything from the context and free the memory */
141
142 /* It's best practice to try to clear secrets from memory after using them.
143 * This is done because some bugs can allow an attacker to leak memory, for
144 * example through "out of bounds" array access (see Heartbleed), Or the OS
145 * swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
146 *
147 * TODO: Prevent these writes from being optimized out, as any good compiler
148 * will remove any writes that aren't used. */
149 memset(seckey, 0, sizeof(seckey));
150
151 return 0;
152}
int main(void)
Definition schnorr.c:20
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Definition secp256k1.c:146
#define SECP256K1_CONTEXT_SIGN
Definition secp256k1.h:196
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Definition secp256k1.c:706
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Definition secp256k1.c:107
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_tagged_sha256(const secp256k1_context *ctx, unsigned char *hash32, const unsigned char *tag, size_t taglen, const unsigned char *msg, size_t msglen) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5)
Definition secp256k1.c:740
#define SECP256K1_CONTEXT_VERIFY
Definition secp256k1.h:195
SECP256K1_API int secp256k1_xonly_pubkey_serialize(const secp256k1_context *ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Definition main_impl.h:43
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(const secp256k1_context *ctx, secp256k1_keypair *keypair, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Definition main_impl.h:195
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(const secp256k1_context *ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4)
Definition main_impl.h:233
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse(const secp256k1_context *ctx, secp256k1_xonly_pubkey *pubkey, const unsigned char *input32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Definition main_impl.h:21
SECP256K1_API int secp256k1_schnorrsig_sign32(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Definition main_impl.h:195
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(const secp256k1_context *ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5)
Definition main_impl.h:219
CK_BYTE_PTR pubkey
memset(pInfo->slotDescription, ' ', 64)