Wire Sysio Wire Sysion 1.0.0
Loading...
Searching...
No Matches
gmock-actions.h
Go to the documentation of this file.
1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used actions.
35
36#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38
39#ifndef _WIN32_WCE
40# include <errno.h>
41#endif
42
43#include <algorithm>
44#include <string>
45
48
49#if GTEST_LANG_CXX11 // Defined by gtest-port.h via gmock-port.h.
50#include <functional>
51#include <type_traits>
52#endif // GTEST_LANG_CXX11
53
54namespace testing {
55
56// To implement an action Foo, define:
57// 1. a class FooAction that implements the ActionInterface interface, and
58// 2. a factory function that creates an Action object from a
59// const FooAction*.
60//
61// The two-level delegation design follows that of Matcher, providing
62// consistency for extension developers. It also eases ownership
63// management as Action objects can now be copied like plain values.
64
65namespace internal {
66
67template <typename F1, typename F2>
68class ActionAdaptor;
69
70// BuiltInDefaultValueGetter<T, true>::Get() returns a
71// default-constructed T value. BuiltInDefaultValueGetter<T,
72// false>::Get() crashes with an error.
73//
74// This primary template is used when kDefaultConstructible is true.
75template <typename T, bool kDefaultConstructible>
77 static T Get() { return T(); }
78};
79template <typename T>
81 static T Get() {
82 Assert(false, __FILE__, __LINE__,
83 "Default action undefined for the function return type.");
84 return internal::Invalid<T>();
85 // The above statement will never be reached, but is required in
86 // order for this function to compile.
87 }
88};
89
90// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
91// for type T, which is NULL when T is a raw pointer type, 0 when T is
92// a numeric type, false when T is bool, or "" when T is string or
93// std::string. In addition, in C++11 and above, it turns a
94// default-constructed T value if T is default constructible. For any
95// other type T, the built-in default T value is undefined, and the
96// function will abort the process.
97template <typename T>
99 public:
100#if GTEST_LANG_CXX11
101 // This function returns true iff type T has a built-in default value.
102 static bool Exists() {
103 return ::std::is_default_constructible<T>::value;
104 }
105
106 static T Get() {
108 T, ::std::is_default_constructible<T>::value>::Get();
109 }
110
111#else // GTEST_LANG_CXX11
112 // This function returns true iff type T has a built-in default value.
113 static bool Exists() {
114 return false;
115 }
116
117 static T Get() {
119 }
120
121#endif // GTEST_LANG_CXX11
122};
123
124// This partial specialization says that we use the same built-in
125// default value for T and const T.
126template <typename T>
127class BuiltInDefaultValue<const T> {
128 public:
129 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
130 static T Get() { return BuiltInDefaultValue<T>::Get(); }
131};
132
133// This partial specialization defines the default values for pointer
134// types.
135template <typename T>
137 public:
138 static bool Exists() { return true; }
139 static T* Get() { return NULL; }
140};
141
142// The following specializations define the default values for
143// specific types we care about.
144#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
145 template <> \
146 class BuiltInDefaultValue<type> { \
147 public: \
148 static bool Exists() { return true; } \
149 static type Get() { return value; } \
150 }
151
153#if GTEST_HAS_GLOBAL_STRING
155#endif // GTEST_HAS_GLOBAL_STRING
161
162// There's no need for a default action for signed wchar_t, as that
163// type is the same as wchar_t for gcc, and invalid for MSVC.
164//
165// There's also no need for a default action for unsigned wchar_t, as
166// that type is the same as unsigned int for gcc, and invalid for
167// MSVC.
168#if GMOCK_WCHAR_T_IS_NATIVE_
170#endif
171
182
183#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
184
185} // namespace internal
186
187// When an unexpected function call is encountered, Google Mock will
188// let it return a default value if the user has specified one for its
189// return type, or if the return type has a built-in default value;
190// otherwise Google Mock won't know what value to return and will have
191// to abort the process.
192//
193// The DefaultValue<T> class allows a user to specify the
194// default value for a type T that is both copyable and publicly
195// destructible (i.e. anything that can be used as a function return
196// type). The usage is:
197//
198// // Sets the default value for type T to be foo.
199// DefaultValue<T>::Set(foo);
200template <typename T>
202 public:
203 // Sets the default value for type T; requires T to be
204 // copy-constructable and have a public destructor.
205 static void Set(T x) {
206 delete producer_;
207 producer_ = new FixedValueProducer(x);
208 }
209
210 // Provides a factory function to be called to generate the default value.
211 // This method can be used even if T is only move-constructible, but it is not
212 // limited to that case.
213 typedef T (*FactoryFunction)();
214 static void SetFactory(FactoryFunction factory) {
215 delete producer_;
216 producer_ = new FactoryValueProducer(factory);
217 }
218
219 // Unsets the default value for type T.
220 static void Clear() {
221 delete producer_;
222 producer_ = NULL;
223 }
224
225 // Returns true iff the user has set the default value for type T.
226 static bool IsSet() { return producer_ != NULL; }
227
228 // Returns true if T has a default return value set by the user or there
229 // exists a built-in default value.
230 static bool Exists() {
232 }
233
234 // Returns the default value for type T if the user has set one;
235 // otherwise returns the built-in default value. Requires that Exists()
236 // is true, which ensures that the return value is well-defined.
237 static T Get() {
238 return producer_ == NULL ?
239 internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
240 }
241
242 private:
243 class ValueProducer {
244 public:
245 virtual ~ValueProducer() {}
246 virtual T Produce() = 0;
247 };
248
249 class FixedValueProducer : public ValueProducer {
250 public:
251 explicit FixedValueProducer(T value) : value_(value) {}
252 virtual T Produce() { return value_; }
253
254 private:
255 const T value_;
256 GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
257 };
258
259 class FactoryValueProducer : public ValueProducer {
260 public:
261 explicit FactoryValueProducer(FactoryFunction factory)
262 : factory_(factory) {}
263 virtual T Produce() { return factory_(); }
264
265 private:
266 const FactoryFunction factory_;
267 GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
268 };
269
270 static ValueProducer* producer_;
271};
272
273// This partial specialization allows a user to set default values for
274// reference types.
275template <typename T>
277 public:
278 // Sets the default value for type T&.
279 static void Set(T& x) { // NOLINT
280 address_ = &x;
281 }
282
283 // Unsets the default value for type T&.
284 static void Clear() {
285 address_ = NULL;
286 }
287
288 // Returns true iff the user has set the default value for type T&.
289 static bool IsSet() { return address_ != NULL; }
290
291 // Returns true if T has a default return value set by the user or there
292 // exists a built-in default value.
293 static bool Exists() {
295 }
296
297 // Returns the default value for type T& if the user has set one;
298 // otherwise returns the built-in default value if there is one;
299 // otherwise aborts the process.
300 static T& Get() {
301 return address_ == NULL ?
303 }
304
305 private:
306 static T* address_;
307};
308
309// This specialization allows DefaultValue<void>::Get() to
310// compile.
311template <>
312class DefaultValue<void> {
313 public:
314 static bool Exists() { return true; }
315 static void Get() {}
316};
317
318// Points to the user-set default value for type T.
319template <typename T>
320typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
321
322// Points to the user-set default value for type T&.
323template <typename T>
324T* DefaultValue<T&>::address_ = NULL;
325
326// Implement this interface to define an action for function type F.
327template <typename F>
329 public:
332
334 virtual ~ActionInterface() {}
335
336 // Performs the action. This method is not const, as in general an
337 // action can have side effects and be stateful. For example, a
338 // get-the-next-element-from-the-collection action will need to
339 // remember the current element.
340 virtual Result Perform(const ArgumentTuple& args) = 0;
341
342 private:
344};
345
346// An Action<F> is a copyable and IMMUTABLE (except by assignment)
347// object that represents an action to be taken when a mock function
348// of type F is called. The implementation of Action<T> is just a
349// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
350// Don't inherit from Action!
351//
352// You can view an object implementing ActionInterface<F> as a
353// concrete action (including its current state), and an Action<F>
354// object as a handle to it.
355template <typename F>
356class Action {
357 public:
360
361 // Constructs a null Action. Needed for storing Action objects in
362 // STL containers.
364
365#if GTEST_LANG_CXX11
366 // Construct an Action from a specified callable.
367 // This cannot take std::function directly, because then Action would not be
368 // directly constructible from lambda (it would require two conversions).
369 template <typename G,
370 typename = typename ::std::enable_if<
371 ::std::is_constructible<::std::function<F>, G>::value>::type>
372 Action(G&& fun) : fun_(::std::forward<G>(fun)) {} // NOLINT
373#endif
374
375 // Constructs an Action from its implementation.
376 explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
377
378 // This constructor allows us to turn an Action<Func> object into an
379 // Action<F>, as long as F's arguments can be implicitly converted
380 // to Func's and Func's return type can be implicitly converted to
381 // F's.
382 template <typename Func>
383 explicit Action(const Action<Func>& action);
384
385 // Returns true iff this is the DoDefault() action.
386 bool IsDoDefault() const {
387#if GTEST_LANG_CXX11
388 return impl_ == nullptr && fun_ == nullptr;
389#else
390 return impl_ == NULL;
391#endif
392 }
393
394 // Performs the action. Note that this method is const even though
395 // the corresponding method in ActionInterface is not. The reason
396 // is that a const Action<F> means that it cannot be re-bound to
397 // another concrete action, not that the concrete action it binds to
398 // cannot change state. (Think of the difference between a const
399 // pointer and a pointer to const.)
401 if (IsDoDefault()) {
402 internal::IllegalDoDefault(__FILE__, __LINE__);
403 }
404#if GTEST_LANG_CXX11
405 if (fun_ != nullptr) {
406 return internal::Apply(fun_, ::std::move(args));
407 }
408#endif
409 return impl_->Perform(args);
410 }
411
412 private:
413 template <typename F1, typename F2>
415
416 template <typename G>
417 friend class Action;
418
419 // In C++11, Action can be implemented either as a generic functor (through
420 // std::function), or legacy ActionInterface. In C++98, only ActionInterface
421 // is available. The invariants are as follows:
422 // * in C++98, impl_ is null iff this is the default action
423 // * in C++11, at most one of fun_ & impl_ may be nonnull; both are null iff
424 // this is the default action
425#if GTEST_LANG_CXX11
426 ::std::function<F> fun_;
427#endif
429};
430
431// The PolymorphicAction class template makes it easy to implement a
432// polymorphic action (i.e. an action that can be used in mock
433// functions of than one type, e.g. Return()).
434//
435// To define a polymorphic action, a user first provides a COPYABLE
436// implementation class that has a Perform() method template:
437//
438// class FooAction {
439// public:
440// template <typename Result, typename ArgumentTuple>
441// Result Perform(const ArgumentTuple& args) const {
442// // Processes the arguments and returns a result, using
443// // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
444// }
445// ...
446// };
447//
448// Then the user creates the polymorphic action using
449// MakePolymorphicAction(object) where object has type FooAction. See
450// the definition of Return(void) and SetArgumentPointee<N>(value) for
451// complete examples.
452template <typename Impl>
454 public:
455 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
456
457 template <typename F>
458 operator Action<F>() const {
459 return Action<F>(new MonomorphicImpl<F>(impl_));
460 }
461
462 private:
463 template <typename F>
464 class MonomorphicImpl : public ActionInterface<F> {
465 public:
466 typedef typename internal::Function<F>::Result Result;
467 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
468
469 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
470
471 virtual Result Perform(const ArgumentTuple& args) {
472 return impl_.template Perform<Result>(args);
473 }
474
475 private:
476 Impl impl_;
477
478 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
479 };
480
481 Impl impl_;
482
484};
485
486// Creates an Action from its implementation and returns it. The
487// created Action object owns the implementation.
488template <typename F>
490 return Action<F>(impl);
491}
492
493// Creates a polymorphic action from its implementation. This is
494// easier to use than the PolymorphicAction<Impl> constructor as it
495// doesn't require you to explicitly write the template argument, e.g.
496//
497// MakePolymorphicAction(foo);
498// vs
499// PolymorphicAction<TypeOfFoo>(foo);
500template <typename Impl>
502 return PolymorphicAction<Impl>(impl);
503}
504
505namespace internal {
506
507// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
508// and F1 are compatible.
509template <typename F1, typename F2>
510class ActionAdaptor : public ActionInterface<F1> {
511 public:
514
515 explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
516
517 virtual Result Perform(const ArgumentTuple& args) {
518 return impl_->Perform(args);
519 }
520
521 private:
523
525};
526
527// Helper struct to specialize ReturnAction to execute a move instead of a copy
528// on return. Useful for move-only types, but could be used on any type.
529template <typename T>
531 explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
533};
534
535// Implements the polymorphic Return(x) action, which can be used in
536// any function that returns the type of x, regardless of the argument
537// types.
538//
539// Note: The value passed into Return must be converted into
540// Function<F>::Result when this action is cast to Action<F> rather than
541// when that action is performed. This is important in scenarios like
542//
543// MOCK_METHOD1(Method, T(U));
544// ...
545// {
546// Foo foo;
547// X x(&foo);
548// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
549// }
550//
551// In the example above the variable x holds reference to foo which leaves
552// scope and gets destroyed. If copying X just copies a reference to foo,
553// that copy will be left with a hanging reference. If conversion to T
554// makes a copy of foo, the above code is safe. To support that scenario, we
555// need to make sure that the type conversion happens inside the EXPECT_CALL
556// statement, and conversion of the result of Return to Action<T(U)> is a
557// good place for that.
558//
559// The real life example of the above scenario happens when an invocation
560// of gtl::Container() is passed into Return.
561//
562template <typename R>
564 public:
565 // Constructs a ReturnAction object from the value to be returned.
566 // 'value' is passed by value instead of by const reference in order
567 // to allow Return("string literal") to compile.
568 explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
569
570 // This template type conversion operator allows Return(x) to be
571 // used in ANY function that returns x's type.
572 template <typename F>
573 operator Action<F>() const {
574 // Assert statement belongs here because this is the best place to verify
575 // conditions on F. It produces the clearest error messages
576 // in most compilers.
577 // Impl really belongs in this scope as a local class but can't
578 // because MSVC produces duplicate symbols in different translation units
579 // in this case. Until MS fixes that bug we put Impl into the class scope
580 // and put the typedef both here (for use in assert statement) and
581 // in the Impl class. But both definitions must be the same.
582 typedef typename Function<F>::Result Result;
585 use_ReturnRef_instead_of_Return_to_return_a_reference);
586 return Action<F>(new Impl<R, F>(value_));
587 }
588
589 private:
590 // Implements the Return(x) action for a particular function type F.
591 template <typename R_, typename F>
592 class Impl : public ActionInterface<F> {
593 public:
594 typedef typename Function<F>::Result Result;
595 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
596
597 // The implicit cast is necessary when Result has more than one
598 // single-argument constructor (e.g. Result is std::vector<int>) and R
599 // has a type conversion operator template. In that case, value_(value)
600 // won't compile as the compiler doesn't known which constructor of
601 // Result to call. ImplicitCast_ forces the compiler to convert R to
602 // Result without considering explicit constructors, thus resolving the
603 // ambiguity. value_ is then initialized using its copy constructor.
604 explicit Impl(const linked_ptr<R>& value)
605 : value_before_cast_(*value),
606 value_(ImplicitCast_<Result>(value_before_cast_)) {}
607
608 virtual Result Perform(const ArgumentTuple&) { return value_; }
609
610 private:
612 Result_cannot_be_a_reference_type);
613 // We save the value before casting just in case it is being cast to a
614 // wrapper type.
615 R value_before_cast_;
616 Result value_;
617
619 };
620
621 // Partially specialize for ByMoveWrapper. This version of ReturnAction will
622 // move its contents instead.
623 template <typename R_, typename F>
624 class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
625 public:
626 typedef typename Function<F>::Result Result;
627 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
628
629 explicit Impl(const linked_ptr<R>& wrapper)
630 : performed_(false), wrapper_(wrapper) {}
631
632 virtual Result Perform(const ArgumentTuple&) {
633 GTEST_CHECK_(!performed_)
634 << "A ByMove() action should only be performed once.";
635 performed_ = true;
636 return internal::move(wrapper_->payload);
637 }
638
639 private:
640 bool performed_;
641 const linked_ptr<R> wrapper_;
642
644 };
645
646 const linked_ptr<R> value_;
647
649};
650
651// Implements the ReturnNull() action.
653 public:
654 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
655 // this is enforced by returning nullptr, and in non-C++11 by asserting a
656 // pointer type on compile time.
657 template <typename Result, typename ArgumentTuple>
658 static Result Perform(const ArgumentTuple&) {
659#if GTEST_LANG_CXX11
660 return nullptr;
661#else
663 ReturnNull_can_be_used_to_return_a_pointer_only);
664 return NULL;
665#endif // GTEST_LANG_CXX11
666 }
667};
668
669// Implements the Return() action.
671 public:
672 // Allows Return() to be used in any void-returning function.
673 template <typename Result, typename ArgumentTuple>
674 static void Perform(const ArgumentTuple&) {
676 }
677};
678
679// Implements the polymorphic ReturnRef(x) action, which can be used
680// in any function that returns a reference to the type of x,
681// regardless of the argument types.
682template <typename T>
684 public:
685 // Constructs a ReturnRefAction object from the reference to be returned.
686 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
687
688 // This template type conversion operator allows ReturnRef(x) to be
689 // used in ANY function that returns a reference to x's type.
690 template <typename F>
691 operator Action<F>() const {
692 typedef typename Function<F>::Result Result;
693 // Asserts that the function return type is a reference. This
694 // catches the user error of using ReturnRef(x) when Return(x)
695 // should be used, and generates some helpful error message.
697 use_Return_instead_of_ReturnRef_to_return_a_value);
698 return Action<F>(new Impl<F>(ref_));
699 }
700
701 private:
702 // Implements the ReturnRef(x) action for a particular function type F.
703 template <typename F>
704 class Impl : public ActionInterface<F> {
705 public:
706 typedef typename Function<F>::Result Result;
707 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
708
709 explicit Impl(T& ref) : ref_(ref) {} // NOLINT
710
711 virtual Result Perform(const ArgumentTuple&) {
712 return ref_;
713 }
714
715 private:
716 T& ref_;
717
719 };
720
721 T& ref_;
722
724};
725
726// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
727// used in any function that returns a reference to the type of x,
728// regardless of the argument types.
729template <typename T>
731 public:
732 // Constructs a ReturnRefOfCopyAction object from the reference to
733 // be returned.
734 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
735
736 // This template type conversion operator allows ReturnRefOfCopy(x) to be
737 // used in ANY function that returns a reference to x's type.
738 template <typename F>
739 operator Action<F>() const {
740 typedef typename Function<F>::Result Result;
741 // Asserts that the function return type is a reference. This
742 // catches the user error of using ReturnRefOfCopy(x) when Return(x)
743 // should be used, and generates some helpful error message.
746 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
747 return Action<F>(new Impl<F>(value_));
748 }
749
750 private:
751 // Implements the ReturnRefOfCopy(x) action for a particular function type F.
752 template <typename F>
753 class Impl : public ActionInterface<F> {
754 public:
755 typedef typename Function<F>::Result Result;
756 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
757
758 explicit Impl(const T& value) : value_(value) {} // NOLINT
759
760 virtual Result Perform(const ArgumentTuple&) {
761 return value_;
762 }
763
764 private:
765 T value_;
766
768 };
769
770 const T value_;
771
773};
774
775// Implements the polymorphic DoDefault() action.
777 public:
778 // This template type conversion operator allows DoDefault() to be
779 // used in any function.
780 template <typename F>
781 operator Action<F>() const { return Action<F>(); } // NOLINT
782};
783
784// Implements the Assign action to set a given pointer referent to a
785// particular value.
786template <typename T1, typename T2>
788 public:
789 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
790
791 template <typename Result, typename ArgumentTuple>
792 void Perform(const ArgumentTuple& /* args */) const {
793 *ptr_ = value_;
794 }
795
796 private:
797 T1* const ptr_;
798 const T2 value_;
799
801};
802
803#if !GTEST_OS_WINDOWS_MOBILE
804
805// Implements the SetErrnoAndReturn action to simulate return from
806// various system calls and libc functions.
807template <typename T>
809 public:
810 SetErrnoAndReturnAction(int errno_value, T result)
811 : errno_(errno_value),
812 result_(result) {}
813 template <typename Result, typename ArgumentTuple>
814 Result Perform(const ArgumentTuple& /* args */) const {
815 errno = errno_;
816 return result_;
817 }
818
819 private:
820 const int errno_;
821 const T result_;
822
824};
825
826#endif // !GTEST_OS_WINDOWS_MOBILE
827
828// Implements the SetArgumentPointee<N>(x) action for any function
829// whose N-th argument (0-based) is a pointer to x's type. The
830// template parameter kIsProto is true iff type A is ProtocolMessage,
831// proto2::Message, or a sub-class of those.
832template <size_t N, typename A, bool kIsProto>
834 public:
835 // Constructs an action that sets the variable pointed to by the
836 // N-th function argument to 'value'.
837 explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
838
839 template <typename Result, typename ArgumentTuple>
840 void Perform(const ArgumentTuple& args) const {
842 *::testing::get<N>(args) = value_;
843 }
844
845 private:
846 const A value_;
847
849};
850
851template <size_t N, typename Proto>
852class SetArgumentPointeeAction<N, Proto, true> {
853 public:
854 // Constructs an action that sets the variable pointed to by the
855 // N-th function argument to 'proto'. Both ProtocolMessage and
856 // proto2::Message have the CopyFrom() method, so the same
857 // implementation works for both.
858 explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
859 proto_->CopyFrom(proto);
860 }
861
862 template <typename Result, typename ArgumentTuple>
863 void Perform(const ArgumentTuple& args) const {
865 ::testing::get<N>(args)->CopyFrom(*proto_);
866 }
867
868 private:
869 const internal::linked_ptr<Proto> proto_;
870
872};
873
874// Implements the InvokeWithoutArgs(f) action. The template argument
875// FunctionImpl is the implementation type of f, which can be either a
876// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
877// Action<F> as long as f's type is compatible with F (i.e. f can be
878// assigned to a tr1::function<F>).
879template <typename FunctionImpl>
881 public:
882 // The c'tor makes a copy of function_impl (either a function
883 // pointer or a functor).
884 explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
885 : function_impl_(function_impl) {}
886
887 // Allows InvokeWithoutArgs(f) to be used as any action whose type is
888 // compatible with f.
889 template <typename Result, typename ArgumentTuple>
890 Result Perform(const ArgumentTuple&) { return function_impl_(); }
891
892 private:
893 FunctionImpl function_impl_;
894
896};
897
898// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
899template <class Class, typename MethodPtr>
901 public:
902 InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
903 : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
904
905 template <typename Result, typename ArgumentTuple>
906 Result Perform(const ArgumentTuple&) const {
907 return (obj_ptr_->*method_ptr_)();
908 }
909
910 private:
911 Class* const obj_ptr_;
912 const MethodPtr method_ptr_;
913
915};
916
917// Implements the InvokeWithoutArgs(callback) action.
918template <typename CallbackType>
920 public:
921 // The c'tor takes ownership of the callback.
922 explicit InvokeCallbackWithoutArgsAction(CallbackType* callback)
923 : callback_(callback) {
924 callback->CheckIsRepeatable(); // Makes sure the callback is permanent.
925 }
926
927 // This type conversion operator template allows Invoke(callback) to
928 // be used wherever the callback's return type can be implicitly
929 // converted to that of the mock function.
930 template <typename Result, typename ArgumentTuple>
931 Result Perform(const ArgumentTuple&) const { return callback_->Run(); }
932
933 private:
935
937};
938
939// Implements the IgnoreResult(action) action.
940template <typename A>
942 public:
943 explicit IgnoreResultAction(const A& action) : action_(action) {}
944
945 template <typename F>
946 operator Action<F>() const {
947 // Assert statement belongs here because this is the best place to verify
948 // conditions on F. It produces the clearest error messages
949 // in most compilers.
950 // Impl really belongs in this scope as a local class but can't
951 // because MSVC produces duplicate symbols in different translation units
952 // in this case. Until MS fixes that bug we put Impl into the class scope
953 // and put the typedef both here (for use in assert statement) and
954 // in the Impl class. But both definitions must be the same.
955 typedef typename internal::Function<F>::Result Result;
956
957 // Asserts at compile time that F returns void.
959
960 return Action<F>(new Impl<F>(action_));
961 }
962
963 private:
964 template <typename F>
965 class Impl : public ActionInterface<F> {
966 public:
967 typedef typename internal::Function<F>::Result Result;
968 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
969
970 explicit Impl(const A& action) : action_(action) {}
971
972 virtual void Perform(const ArgumentTuple& args) {
973 // Performs the action and ignores its result.
974 action_.Perform(args);
975 }
976
977 private:
978 // Type OriginalFunction is the same as F except that its return
979 // type is IgnoredValue.
980 typedef typename internal::Function<F>::MakeResultIgnoredValue
981 OriginalFunction;
982
983 const Action<OriginalFunction> action_;
984
986 };
987
988 const A action_;
989
991};
992
993// A ReferenceWrapper<T> object represents a reference to type T,
994// which can be either const or not. It can be explicitly converted
995// from, and implicitly converted to, a T&. Unlike a reference,
996// ReferenceWrapper<T> can be copied and can survive template type
997// inference. This is used to support by-reference arguments in the
998// InvokeArgument<N>(...) action. The idea was from "reference
999// wrappers" in tr1, which we don't have in our source tree yet.
1000template <typename T>
1002 public:
1003 // Constructs a ReferenceWrapper<T> object from a T&.
1004 explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
1005
1006 // Allows a ReferenceWrapper<T> object to be implicitly converted to
1007 // a T&.
1008 operator T&() const { return *pointer_; }
1009 private:
1010 T* pointer_;
1011};
1012
1013// Allows the expression ByRef(x) to be printed as a reference to x.
1014template <typename T>
1015void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
1016 T& value = ref;
1018}
1019
1020// Does two actions sequentially. Used for implementing the DoAll(a1,
1021// a2, ...) action.
1022template <typename Action1, typename Action2>
1024 public:
1025 DoBothAction(Action1 action1, Action2 action2)
1026 : action1_(action1), action2_(action2) {}
1027
1028 // This template type conversion operator allows DoAll(a1, ..., a_n)
1029 // to be used in ANY function of compatible type.
1030 template <typename F>
1031 operator Action<F>() const {
1032 return Action<F>(new Impl<F>(action1_, action2_));
1033 }
1034
1035 private:
1036 // Implements the DoAll(...) action for a particular function type F.
1037 template <typename F>
1038 class Impl : public ActionInterface<F> {
1039 public:
1040 typedef typename Function<F>::Result Result;
1041 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1042 typedef typename Function<F>::MakeResultVoid VoidResult;
1043
1044 Impl(const Action<VoidResult>& action1, const Action<F>& action2)
1045 : action1_(action1), action2_(action2) {}
1046
1047 virtual Result Perform(const ArgumentTuple& args) {
1048 action1_.Perform(args);
1049 return action2_.Perform(args);
1050 }
1051
1052 private:
1053 const Action<VoidResult> action1_;
1054 const Action<F> action2_;
1055
1057 };
1058
1059 Action1 action1_;
1060 Action2 action2_;
1061
1063};
1064
1065} // namespace internal
1066
1067// An Unused object can be implicitly constructed from ANY value.
1068// This is handy when defining actions that ignore some or all of the
1069// mock function arguments. For example, given
1070//
1071// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1072// MOCK_METHOD3(Bar, double(int index, double x, double y));
1073//
1074// instead of
1075//
1076// double DistanceToOriginWithLabel(const string& label, double x, double y) {
1077// return sqrt(x*x + y*y);
1078// }
1079// double DistanceToOriginWithIndex(int index, double x, double y) {
1080// return sqrt(x*x + y*y);
1081// }
1082// ...
1083// EXPECT_CALL(mock, Foo("abc", _, _))
1084// .WillOnce(Invoke(DistanceToOriginWithLabel));
1085// EXPECT_CALL(mock, Bar(5, _, _))
1086// .WillOnce(Invoke(DistanceToOriginWithIndex));
1087//
1088// you could write
1089//
1090// // We can declare any uninteresting argument as Unused.
1091// double DistanceToOrigin(Unused, double x, double y) {
1092// return sqrt(x*x + y*y);
1093// }
1094// ...
1095// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1096// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1098
1099// This constructor allows us to turn an Action<From> object into an
1100// Action<To>, as long as To's arguments can be implicitly converted
1101// to From's and From's return type cann be implicitly converted to
1102// To's.
1103template <typename To>
1104template <typename From>
1106 :
1108 fun_(from.fun_),
1109#endif
1110 impl_(from.impl_ == NULL ? NULL
1111 : new internal::ActionAdaptor<To, From>(from)) {
1112}
1113
1114// Creates an action that returns 'value'. 'value' is passed by value
1115// instead of const reference - otherwise Return("string literal")
1116// will trigger a compiler error about using array as initializer.
1117template <typename R>
1121
1122// Creates an action that returns NULL.
1126
1127// Creates an action that returns from a void function.
1131
1132// Creates an action that returns the reference to a variable.
1133template <typename R>
1136}
1137
1138// Creates an action that returns the reference to a copy of the
1139// argument. The copy is created when the action is constructed and
1140// lives as long as the action.
1141template <typename R>
1145
1146// Modifies the parent action (a Return() action) to perform a move of the
1147// argument instead of a copy.
1148// Return(ByMove()) actions can only be executed once and will assert this
1149// invariant.
1150template <typename R>
1154
1155// Creates an action that does the default action for the give mock function.
1159
1160// Creates an action that sets the variable pointed by the N-th
1161// (0-based) function argument to 'value'.
1162template <size_t N, typename T>
1163PolymorphicAction<
1164 internal::SetArgumentPointeeAction<
1170
1171#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1172// This overload allows SetArgPointee() to accept a string literal.
1173// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1174// this overload from the templated version and emit a compile error.
1175template <size_t N>
1176PolymorphicAction<
1177 internal::SetArgumentPointeeAction<N, const char*, false> >
1178SetArgPointee(const char* p) {
1180 N, const char*, false>(p));
1181}
1182
1183template <size_t N>
1184PolymorphicAction<
1185 internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1186SetArgPointee(const wchar_t* p) {
1188 N, const wchar_t*, false>(p));
1189}
1190#endif
1191
1192// The following version is DEPRECATED.
1193template <size_t N, typename T>
1194PolymorphicAction<
1195 internal::SetArgumentPointeeAction<
1201
1202// Creates an action that sets a pointer referent to a given value.
1203template <typename T1, typename T2>
1207
1208#if !GTEST_OS_WINDOWS_MOBILE
1209
1210// Creates an action that sets errno and returns the appropriate error.
1211template <typename T>
1212PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1213SetErrnoAndReturn(int errval, T result) {
1214 return MakePolymorphicAction(
1215 internal::SetErrnoAndReturnAction<T>(errval, result));
1216}
1217
1218#endif // !GTEST_OS_WINDOWS_MOBILE
1219
1220// Various overloads for InvokeWithoutArgs().
1221
1222// Creates an action that invokes 'function_impl' with no argument.
1223template <typename FunctionImpl>
1224PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1225InvokeWithoutArgs(FunctionImpl function_impl) {
1226 return MakePolymorphicAction(
1228}
1229
1230// Creates an action that invokes the given method on the given object
1231// with no argument.
1232template <class Class, typename MethodPtr>
1233PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1234InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1235 return MakePolymorphicAction(
1237 obj_ptr, method_ptr));
1238}
1239
1240// Creates an action that performs an_action and throws away its
1241// result. In other words, it changes the return type of an_action to
1242// void. an_action MUST NOT return void, or the code won't compile.
1243template <typename A>
1245 return internal::IgnoreResultAction<A>(an_action);
1246}
1247
1248// Creates a reference wrapper for the given L-value. If necessary,
1249// you can explicitly specify the type of the reference. For example,
1250// suppose 'derived' is an object of type Derived, ByRef(derived)
1251// would wrap a Derived&. If you want to wrap a const Base& instead,
1252// where Base is a base class of Derived, just write:
1253//
1254// ByRef<const Base>(derived)
1255template <typename T>
1256inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
1257 return internal::ReferenceWrapper<T>(l_value);
1258}
1259
1260} // namespace testing
1261
1262#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
const mie::Vuint & p
Definition bn.cpp:27
bool IsDoDefault() const
Result Perform(ArgumentTuple args) const
Action(ActionInterface< F > *impl)
friend class Action
Action(const Action< Func > &action)
internal::Function< F >::Result Result
internal::Function< F >::ArgumentTuple ArgumentTuple
internal::Function< F >::Result Result
virtual Result Perform(const ArgumentTuple &args)=0
internal::Function< F >::ArgumentTuple ArgumentTuple
static void Set(T x)
static void SetFactory(FactoryFunction factory)
PolymorphicAction(const Impl &impl)
internal::Function< F1 >::Result Result
ActionAdaptor(const Action< F2 > &from)
virtual Result Perform(const ArgumentTuple &args)
internal::Function< F1 >::ArgumentTuple ArgumentTuple
void Perform(const ArgumentTuple &) const
DoBothAction(Action1 action1, Action2 action2)
Result Perform(const ArgumentTuple &) const
Result Perform(const ArgumentTuple &) const
InvokeMethodWithoutArgsAction(Class *obj_ptr, MethodPtr method_ptr)
InvokeWithoutArgsAction(FunctionImpl function_impl)
Result Perform(const ArgumentTuple &)
static Result Perform(const ArgumentTuple &)
static void Perform(const ArgumentTuple &)
void Perform(const ArgumentTuple &args) const
Result Perform(const ArgumentTuple &) const
SetErrnoAndReturnAction(int errno_value, T result)
static void Print(const T &value, ::std::ostream *os)
os_t os
#define GTEST_LANG_CXX11
Definition gtest-port.h:337
#define GTEST_CHECK_(condition)
#define GTEST_DISALLOW_ASSIGN_(type)
Definition gtest-port.h:912
#define GTEST_COMPILE_ASSERT_(expr, msg)
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
Definition gtest-port.h:917
Definition name.hpp:106
TypeWithSize< 8 >::Int Int64
void Assert(bool condition, const char *file, int line)
void PrintTo(const ReferenceWrapper< T > &ref, ::std::ostream *os)
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void,)
To ImplicitCast_(To x)
const T & move(const T &t)
GTEST_API_ void IllegalDoDefault(const char *file, int line)
TypeWithSize< 8 >::UInt UInt64
internal::IgnoreResultAction< A > IgnoreResult(const A &an_action)
PolymorphicAction< internal::InvokeWithoutArgsAction< FunctionImpl > > InvokeWithoutArgs(FunctionImpl function_impl)
internal::ByMoveWrapper< R > ByMove(R x)
PolymorphicAction< Impl > MakePolymorphicAction(const Impl &impl)
PolymorphicAction< internal::ReturnVoidAction > Return()
internal::IgnoredValue Unused
PolymorphicAction< internal::AssignAction< T1, T2 > > Assign(T1 *ptr, T2 val)
PolymorphicAction< internal::SetErrnoAndReturnAction< T > > SetErrnoAndReturn(int errval, T result)
Action< F > MakeAction(ActionInterface< F > *impl)
PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage< T >::value > > SetArgumentPointee(const T &x)
internal::ReturnRefOfCopyAction< R > ReturnRefOfCopy(const R &x)
internal::ReferenceWrapper< T > ByRef(T &l_value)
internal::ReturnRefAction< R > ReturnRef(R &x)
PolymorphicAction< internal::SetArgumentPointeeAction< N, T, internal::IsAProtocolMessage< T >::value > > SetArgPointee(const T &x)
internal::DoDefaultAction DoDefault()
PolymorphicAction< internal::ReturnNullAction > ReturnNull()
#define value
Definition pkcs11.h:157
#define T(meth, val, expected)
const int N
Definition quantize.cpp:54
#define R
Definition dtoa.c:306
if(ppFunctionList==NULL)