Wire Sysio Wire Sysion 1.0.0
Loading...
Searching...
No Matches
field_5x52_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_FIELD_REPR_IMPL_H
8#define SECP256K1_FIELD_REPR_IMPL_H
9
10#if defined HAVE_CONFIG_H
11#include "libsecp256k1-config.h"
12#endif
13
14#include "util.h"
15#include "field.h"
16#include "modinv64_impl.h"
17
18#if defined(USE_ASM_X86_64)
19#include "field_5x52_asm_impl.h"
20#else
22#endif
23
39#ifdef VERIFY
40static void secp256k1_fe_verify(const secp256k1_fe *a) {
41 const uint64_t *d = a->n;
42 int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
43 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
44 r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
45 r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
46 r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
47 r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
48 r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
49 r &= (a->magnitude >= 0);
50 r &= (a->magnitude <= 2048);
51 if (a->normalized) {
52 r &= (a->magnitude <= 1);
53 if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
54 r &= (d[0] < 0xFFFFEFFFFFC2FULL);
55 }
56 }
57 VERIFY_CHECK(r == 1);
58}
59#endif
60
61static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m) {
62 VERIFY_CHECK(m >= 0);
63 VERIFY_CHECK(m <= 2048);
64 r->n[0] = 0xFFFFFFFFFFFFFULL * 2 * m;
65 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * m;
66 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * m;
67 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * m;
68 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * m;
69#ifdef VERIFY
70 r->magnitude = m;
71 r->normalized = (m == 0);
72 secp256k1_fe_verify(r);
73#endif
74}
75
76static void secp256k1_fe_normalize(secp256k1_fe *r) {
77 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
78
79 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
80 uint64_t m;
81 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
82
83 /* The first pass ensures the magnitude is 1, ... */
84 t0 += x * 0x1000003D1ULL;
85 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
86 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
87 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
88 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
89
90 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
91 VERIFY_CHECK(t4 >> 49 == 0);
92
93 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
94 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
95 & (t0 >= 0xFFFFEFFFFFC2FULL));
96
97 /* Apply the final reduction (for constant-time behaviour, we do it always) */
98 t0 += x * 0x1000003D1ULL;
99 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
100 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
101 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
102 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
103
104 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
105 VERIFY_CHECK(t4 >> 48 == x);
106
107 /* Mask off the possible multiple of 2^256 from the final reduction */
108 t4 &= 0x0FFFFFFFFFFFFULL;
109
110 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
111
112#ifdef VERIFY
113 r->magnitude = 1;
114 r->normalized = 1;
115 secp256k1_fe_verify(r);
116#endif
117}
118
119static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
120 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
121
122 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
123 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
124
125 /* The first pass ensures the magnitude is 1, ... */
126 t0 += x * 0x1000003D1ULL;
127 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
128 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
129 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
130 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
131
132 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
133 VERIFY_CHECK(t4 >> 49 == 0);
134
135 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
136
137#ifdef VERIFY
138 r->magnitude = 1;
139 secp256k1_fe_verify(r);
140#endif
141}
142
143static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
144 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
145
146 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
147 uint64_t m;
148 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
149
150 /* The first pass ensures the magnitude is 1, ... */
151 t0 += x * 0x1000003D1ULL;
152 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
153 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
154 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
155 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
156
157 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
158 VERIFY_CHECK(t4 >> 49 == 0);
159
160 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
161 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
162 & (t0 >= 0xFFFFEFFFFFC2FULL));
163
164 if (x) {
165 t0 += 0x1000003D1ULL;
166 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
167 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
168 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
169 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
170
171 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
172 VERIFY_CHECK(t4 >> 48 == x);
173
174 /* Mask off the possible multiple of 2^256 from the final reduction */
175 t4 &= 0x0FFFFFFFFFFFFULL;
176 }
177
178 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
179
180#ifdef VERIFY
181 r->magnitude = 1;
182 r->normalized = 1;
183 secp256k1_fe_verify(r);
184#endif
185}
186
187static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
188 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
189
190 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
191 uint64_t z0, z1;
192
193 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
194 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
195
196 /* The first pass ensures the magnitude is 1, ... */
197 t0 += x * 0x1000003D1ULL;
198 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
199 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
200 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
201 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
202 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
203
204 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
205 VERIFY_CHECK(t4 >> 49 == 0);
206
207 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
208}
209
210static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
211 uint64_t t0, t1, t2, t3, t4;
212 uint64_t z0, z1;
213 uint64_t x;
214
215 t0 = r->n[0];
216 t4 = r->n[4];
217
218 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
219 x = t4 >> 48;
220
221 /* The first pass ensures the magnitude is 1, ... */
222 t0 += x * 0x1000003D1ULL;
223
224 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
225 z0 = t0 & 0xFFFFFFFFFFFFFULL;
226 z1 = z0 ^ 0x1000003D0ULL;
227
228 /* Fast return path should catch the majority of cases */
229 if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
230 return 0;
231 }
232
233 t1 = r->n[1];
234 t2 = r->n[2];
235 t3 = r->n[3];
236
237 t4 &= 0x0FFFFFFFFFFFFULL;
238
239 t1 += (t0 >> 52);
240 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
241 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
242 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
243 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
244
245 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
246 VERIFY_CHECK(t4 >> 49 == 0);
247
248 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
249}
250
251SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
252 VERIFY_CHECK(0 <= a && a <= 0x7FFF);
253 r->n[0] = a;
254 r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
255#ifdef VERIFY
256 r->magnitude = (a != 0);
257 r->normalized = 1;
258 secp256k1_fe_verify(r);
259#endif
260}
261
262SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
263 const uint64_t *t = a->n;
264#ifdef VERIFY
265 VERIFY_CHECK(a->normalized);
266 secp256k1_fe_verify(a);
267#endif
268 return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
269}
270
271SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
272#ifdef VERIFY
273 VERIFY_CHECK(a->normalized);
274 secp256k1_fe_verify(a);
275#endif
276 return a->n[0] & 1;
277}
278
279SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
280 int i;
281#ifdef VERIFY
282 a->magnitude = 0;
283 a->normalized = 1;
284#endif
285 for (i=0; i<5; i++) {
286 a->n[i] = 0;
287 }
288}
289
290static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
291 int i;
292#ifdef VERIFY
293 VERIFY_CHECK(a->normalized);
294 VERIFY_CHECK(b->normalized);
295 secp256k1_fe_verify(a);
296 secp256k1_fe_verify(b);
297#endif
298 for (i = 4; i >= 0; i--) {
299 if (a->n[i] > b->n[i]) {
300 return 1;
301 }
302 if (a->n[i] < b->n[i]) {
303 return -1;
304 }
305 }
306 return 0;
307}
308
309static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
310 int ret;
311 r->n[0] = (uint64_t)a[31]
312 | ((uint64_t)a[30] << 8)
313 | ((uint64_t)a[29] << 16)
314 | ((uint64_t)a[28] << 24)
315 | ((uint64_t)a[27] << 32)
316 | ((uint64_t)a[26] << 40)
317 | ((uint64_t)(a[25] & 0xF) << 48);
318 r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
319 | ((uint64_t)a[24] << 4)
320 | ((uint64_t)a[23] << 12)
321 | ((uint64_t)a[22] << 20)
322 | ((uint64_t)a[21] << 28)
323 | ((uint64_t)a[20] << 36)
324 | ((uint64_t)a[19] << 44);
325 r->n[2] = (uint64_t)a[18]
326 | ((uint64_t)a[17] << 8)
327 | ((uint64_t)a[16] << 16)
328 | ((uint64_t)a[15] << 24)
329 | ((uint64_t)a[14] << 32)
330 | ((uint64_t)a[13] << 40)
331 | ((uint64_t)(a[12] & 0xF) << 48);
332 r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
333 | ((uint64_t)a[11] << 4)
334 | ((uint64_t)a[10] << 12)
335 | ((uint64_t)a[9] << 20)
336 | ((uint64_t)a[8] << 28)
337 | ((uint64_t)a[7] << 36)
338 | ((uint64_t)a[6] << 44);
339 r->n[4] = (uint64_t)a[5]
340 | ((uint64_t)a[4] << 8)
341 | ((uint64_t)a[3] << 16)
342 | ((uint64_t)a[2] << 24)
343 | ((uint64_t)a[1] << 32)
344 | ((uint64_t)a[0] << 40);
345 ret = !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
346#ifdef VERIFY
347 r->magnitude = 1;
348 if (ret) {
349 r->normalized = 1;
350 secp256k1_fe_verify(r);
351 } else {
352 r->normalized = 0;
353 }
354#endif
355 return ret;
356}
357
359static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
360#ifdef VERIFY
361 VERIFY_CHECK(a->normalized);
362 secp256k1_fe_verify(a);
363#endif
364 r[0] = (a->n[4] >> 40) & 0xFF;
365 r[1] = (a->n[4] >> 32) & 0xFF;
366 r[2] = (a->n[4] >> 24) & 0xFF;
367 r[3] = (a->n[4] >> 16) & 0xFF;
368 r[4] = (a->n[4] >> 8) & 0xFF;
369 r[5] = a->n[4] & 0xFF;
370 r[6] = (a->n[3] >> 44) & 0xFF;
371 r[7] = (a->n[3] >> 36) & 0xFF;
372 r[8] = (a->n[3] >> 28) & 0xFF;
373 r[9] = (a->n[3] >> 20) & 0xFF;
374 r[10] = (a->n[3] >> 12) & 0xFF;
375 r[11] = (a->n[3] >> 4) & 0xFF;
376 r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
377 r[13] = (a->n[2] >> 40) & 0xFF;
378 r[14] = (a->n[2] >> 32) & 0xFF;
379 r[15] = (a->n[2] >> 24) & 0xFF;
380 r[16] = (a->n[2] >> 16) & 0xFF;
381 r[17] = (a->n[2] >> 8) & 0xFF;
382 r[18] = a->n[2] & 0xFF;
383 r[19] = (a->n[1] >> 44) & 0xFF;
384 r[20] = (a->n[1] >> 36) & 0xFF;
385 r[21] = (a->n[1] >> 28) & 0xFF;
386 r[22] = (a->n[1] >> 20) & 0xFF;
387 r[23] = (a->n[1] >> 12) & 0xFF;
388 r[24] = (a->n[1] >> 4) & 0xFF;
389 r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
390 r[26] = (a->n[0] >> 40) & 0xFF;
391 r[27] = (a->n[0] >> 32) & 0xFF;
392 r[28] = (a->n[0] >> 24) & 0xFF;
393 r[29] = (a->n[0] >> 16) & 0xFF;
394 r[30] = (a->n[0] >> 8) & 0xFF;
395 r[31] = a->n[0] & 0xFF;
396}
397
398SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
399#ifdef VERIFY
400 VERIFY_CHECK(a->magnitude <= m);
401 secp256k1_fe_verify(a);
402 VERIFY_CHECK(0xFFFFEFFFFFC2FULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
403 VERIFY_CHECK(0xFFFFFFFFFFFFFULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
404 VERIFY_CHECK(0x0FFFFFFFFFFFFULL * 2 * (m + 1) >= 0x0FFFFFFFFFFFFULL * 2 * m);
405#endif
406 r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
407 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
408 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
409 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
410 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
411#ifdef VERIFY
412 r->magnitude = m + 1;
413 r->normalized = 0;
414 secp256k1_fe_verify(r);
415#endif
416}
417
418SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
419 r->n[0] *= a;
420 r->n[1] *= a;
421 r->n[2] *= a;
422 r->n[3] *= a;
423 r->n[4] *= a;
424#ifdef VERIFY
425 r->magnitude *= a;
426 r->normalized = 0;
427 secp256k1_fe_verify(r);
428#endif
429}
430
431SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
432#ifdef VERIFY
433 secp256k1_fe_verify(a);
434#endif
435 r->n[0] += a->n[0];
436 r->n[1] += a->n[1];
437 r->n[2] += a->n[2];
438 r->n[3] += a->n[3];
439 r->n[4] += a->n[4];
440#ifdef VERIFY
441 r->magnitude += a->magnitude;
442 r->normalized = 0;
443 secp256k1_fe_verify(r);
444#endif
445}
446
447static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
448#ifdef VERIFY
449 VERIFY_CHECK(a->magnitude <= 8);
450 VERIFY_CHECK(b->magnitude <= 8);
451 secp256k1_fe_verify(a);
452 secp256k1_fe_verify(b);
453 VERIFY_CHECK(r != b);
454 VERIFY_CHECK(a != b);
455#endif
456 secp256k1_fe_mul_inner(r->n, a->n, b->n);
457#ifdef VERIFY
458 r->magnitude = 1;
459 r->normalized = 0;
460 secp256k1_fe_verify(r);
461#endif
462}
463
464static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
465#ifdef VERIFY
466 VERIFY_CHECK(a->magnitude <= 8);
467 secp256k1_fe_verify(a);
468#endif
469 secp256k1_fe_sqr_inner(r->n, a->n);
470#ifdef VERIFY
471 r->magnitude = 1;
472 r->normalized = 0;
473 secp256k1_fe_verify(r);
474#endif
475}
476
477static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
478 uint64_t mask0, mask1;
479 VG_CHECK_VERIFY(r->n, sizeof(r->n));
480 mask0 = flag + ~((uint64_t)0);
481 mask1 = ~mask0;
482 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
483 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
484 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
485 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
486 r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
487#ifdef VERIFY
488 if (flag) {
489 r->magnitude = a->magnitude;
490 r->normalized = a->normalized;
491 }
492#endif
493}
494
495static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
496 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
497 uint64_t one = (uint64_t)1;
498 uint64_t mask = -(t0 & one) >> 12;
499
500#ifdef VERIFY
501 secp256k1_fe_verify(r);
502 VERIFY_CHECK(r->magnitude < 32);
503#endif
504
505 /* Bounds analysis (over the rationals).
506 *
507 * Let m = r->magnitude
508 * C = 0xFFFFFFFFFFFFFULL * 2
509 * D = 0x0FFFFFFFFFFFFULL * 2
510 *
511 * Initial bounds: t0..t3 <= C * m
512 * t4 <= D * m
513 */
514
515 t0 += 0xFFFFEFFFFFC2FULL & mask;
516 t1 += mask;
517 t2 += mask;
518 t3 += mask;
519 t4 += mask >> 4;
520
521 VERIFY_CHECK((t0 & one) == 0);
522
523 /* t0..t3: added <= C/2
524 * t4: added <= D/2
525 *
526 * Current bounds: t0..t3 <= C * (m + 1/2)
527 * t4 <= D * (m + 1/2)
528 */
529
530 r->n[0] = (t0 >> 1) + ((t1 & one) << 51);
531 r->n[1] = (t1 >> 1) + ((t2 & one) << 51);
532 r->n[2] = (t2 >> 1) + ((t3 & one) << 51);
533 r->n[3] = (t3 >> 1) + ((t4 & one) << 51);
534 r->n[4] = (t4 >> 1);
535
536 /* t0..t3: shifted right and added <= C/4 + 1/2
537 * t4: shifted right
538 *
539 * Current bounds: t0..t3 <= C * (m/2 + 1/2)
540 * t4 <= D * (m/2 + 1/4)
541 */
542
543#ifdef VERIFY
544 /* Therefore the output magnitude (M) has to be set such that:
545 * t0..t3: C * M >= C * (m/2 + 1/2)
546 * t4: D * M >= D * (m/2 + 1/4)
547 *
548 * It suffices for all limbs that, for any input magnitude m:
549 * M >= m/2 + 1/2
550 *
551 * and since we want the smallest such integer value for M:
552 * M == floor(m/2) + 1
553 */
554 r->magnitude = (r->magnitude >> 1) + 1;
555 r->normalized = 0;
556 secp256k1_fe_verify(r);
557#endif
558}
559
560static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
561 uint64_t mask0, mask1;
562 VG_CHECK_VERIFY(r->n, sizeof(r->n));
563 mask0 = flag + ~((uint64_t)0);
564 mask1 = ~mask0;
565 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
566 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
567 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
568 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
569}
570
571static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
572#ifdef VERIFY
573 VERIFY_CHECK(a->normalized);
574#endif
575 r->n[0] = a->n[0] | a->n[1] << 52;
576 r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
577 r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
578 r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
579}
580
581static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
582 r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
583 r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
584 r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
585 r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
586 r->n[4] = a->n[3] >> 16;
587#ifdef VERIFY
588 r->magnitude = 1;
589 r->normalized = 1;
590 secp256k1_fe_verify(r);
591#endif
592}
593
594static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a) {
595 const uint64_t M52 = UINT64_MAX >> 12;
596 const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
597
598 /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
599 * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
600 */
601 VERIFY_CHECK(a0 >> 62 == 0);
602 VERIFY_CHECK(a1 >> 62 == 0);
603 VERIFY_CHECK(a2 >> 62 == 0);
604 VERIFY_CHECK(a3 >> 62 == 0);
605 VERIFY_CHECK(a4 >> 8 == 0);
606
607 r->n[0] = a0 & M52;
608 r->n[1] = (a0 >> 52 | a1 << 10) & M52;
609 r->n[2] = (a1 >> 42 | a2 << 20) & M52;
610 r->n[3] = (a2 >> 32 | a3 << 30) & M52;
611 r->n[4] = (a3 >> 22 | a4 << 40);
612
613#ifdef VERIFY
614 r->magnitude = 1;
615 r->normalized = 1;
616 secp256k1_fe_verify(r);
617#endif
618}
619
620static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a) {
621 const uint64_t M62 = UINT64_MAX >> 2;
622 const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
623
624#ifdef VERIFY
625 VERIFY_CHECK(a->normalized);
626#endif
627
628 r->v[0] = (a0 | a1 << 52) & M62;
629 r->v[1] = (a1 >> 10 | a2 << 42) & M62;
630 r->v[2] = (a2 >> 20 | a3 << 32) & M62;
631 r->v[3] = (a3 >> 30 | a4 << 22) & M62;
632 r->v[4] = a4 >> 40;
633}
634
635static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = {
636 {{-0x1000003D1LL, 0, 0, 0, 256}},
637 0x27C7F6E22DDACACFLL
638};
639
640static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
641 secp256k1_fe tmp;
643
644 tmp = *x;
645 secp256k1_fe_normalize(&tmp);
646 secp256k1_fe_to_signed62(&s, &tmp);
647 secp256k1_modinv64(&s, &secp256k1_const_modinfo_fe);
648 secp256k1_fe_from_signed62(r, &s);
649
650#ifdef VERIFY
651 VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
652#endif
653}
654
655static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
656 secp256k1_fe tmp;
658
659 tmp = *x;
660 secp256k1_fe_normalize_var(&tmp);
661 secp256k1_fe_to_signed62(&s, &tmp);
662 secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_fe);
663 secp256k1_fe_from_signed62(r, &s);
664
665#ifdef VERIFY
666 VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
667#endif
668}
669
670#endif /* SECP256K1_FIELD_REPR_IMPL_H */
std::string one()
const mie::Vuint & r
Definition bn.cpp:28
#define VG_CHECK_VERIFY(x, y)
Definition util.h:115
#define VERIFY_CHECK(cond)
Definition util.h:95
#define SECP256K1_RESTRICT
Definition util.h:155
const GenericPointer< typename T::ValueType > T2 T::AllocatorType & a
Definition pointer.h:1181
#define SECP256K1_INLINE
Definition secp256k1.h:127
#define UINT64_MAX
Definition stdint.h:189
unsigned __int64 uint64_t
Definition stdint.h:136
uint32_t n[10]
Definition field_10x26.h:16
CK_ULONG d
CK_RV ret
char * s