Wire Sysio Wire Sysion 1.0.0
Loading...
Searching...
No Matches
ecmult_gen_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_ECMULT_GEN_IMPL_H
8#define SECP256K1_ECMULT_GEN_IMPL_H
9
10#include "util.h"
11#include "scalar.h"
12#include "group.h"
13#include "ecmult_gen.h"
14#include "hash_impl.h"
16
17static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx) {
18 secp256k1_ecmult_gen_blind(ctx, NULL);
19 ctx->built = 1;
20}
21
22static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
23 return ctx->built;
24}
25
26static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
27 ctx->built = 0;
28 secp256k1_scalar_clear(&ctx->blind);
29 secp256k1_gej_clear(&ctx->initial);
30}
31
32/* For accelerating the computation of a*G:
33 * To harden against timing attacks, use the following mechanism:
34 * * Break up the multiplicand into groups of PREC_BITS bits, called n_0, n_1, n_2, ..., n_(PREC_N-1).
35 * * Compute sum(n_i * (PREC_G)^i * G + U_i, i=0 ... PREC_N-1), where:
36 * * U_i = U * 2^i, for i=0 ... PREC_N-2
37 * * U_i = U * (1-2^(PREC_N-1)), for i=PREC_N-1
38 * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0 ... PREC_N-1) = 0.
39 * For each i, and each of the PREC_G possible values of n_i, (n_i * (PREC_G)^i * G + U_i) is
40 * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0 ... PREC_N-1).
41 * None of the resulting prec group elements have a known scalar, and neither do any of
42 * the intermediate sums while computing a*G.
43 * The prec values are stored in secp256k1_ecmult_gen_prec_table[i][n_i] = n_i * (PREC_G)^i * G + U_i.
44 */
45static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
46 int bits = ECMULT_GEN_PREC_BITS;
47 int g = ECMULT_GEN_PREC_G(bits);
48 int n = ECMULT_GEN_PREC_N(bits);
49
53 int i, j, n_i;
54
55 memset(&adds, 0, sizeof(adds));
56 *r = ctx->initial;
57 /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
58 secp256k1_scalar_add(&gnb, gn, &ctx->blind);
59 add.infinity = 0;
60 for (i = 0; i < n; i++) {
61 n_i = secp256k1_scalar_get_bits(&gnb, i * bits, bits);
62 for (j = 0; j < g; j++) {
73 secp256k1_ge_storage_cmov(&adds, &secp256k1_ecmult_gen_prec_table[i][j], j == n_i);
74 }
75 secp256k1_ge_from_storage(&add, &adds);
76 secp256k1_gej_add_ge(r, r, &add);
77 }
78 n_i = 0;
79 secp256k1_ge_clear(&add);
80 secp256k1_scalar_clear(&gnb);
81}
82
83/* Setup blinding values for secp256k1_ecmult_gen. */
84static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
88 unsigned char nonce32[32];
90 int overflow;
91 unsigned char keydata[64] = {0};
92 if (seed32 == NULL) {
93 /* When seed is NULL, reset the initial point and blinding value. */
94 secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
95 secp256k1_gej_neg(&ctx->initial, &ctx->initial);
96 secp256k1_scalar_set_int(&ctx->blind, 1);
97 }
98 /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
99 secp256k1_scalar_get_b32(nonce32, &ctx->blind);
104 memcpy(keydata, nonce32, 32);
105 if (seed32 != NULL) {
106 memcpy(keydata + 32, seed32, 32);
107 }
108 secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
109 memset(keydata, 0, sizeof(keydata));
110 /* Accept unobservably small non-uniformity. */
111 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
112 overflow = !secp256k1_fe_set_b32(&s, nonce32);
113 overflow |= secp256k1_fe_is_zero(&s);
114 secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
115 /* Randomize the projection to defend against multiplier sidechannels. */
116 secp256k1_gej_rescale(&ctx->initial, &s);
117 secp256k1_fe_clear(&s);
118 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
119 secp256k1_scalar_set_b32(&b, nonce32, NULL);
120 /* A blinding value of 0 works, but would undermine the projection hardening. */
121 secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b));
122 secp256k1_rfc6979_hmac_sha256_finalize(&rng);
123 memset(nonce32, 0, 32);
124 secp256k1_ecmult_gen(ctx, &gb, &b);
125 secp256k1_scalar_negate(&b, &b);
126 ctx->blind = b;
127 ctx->initial = gb;
128 secp256k1_scalar_clear(&b);
129 secp256k1_gej_clear(&gb);
130}
131
132#endif /* SECP256K1_ECMULT_GEN_IMPL_H */
const mie::Vuint & r
Definition bn.cpp:28
#define ECMULT_GEN_PREC_G(bits)
Definition ecmult_gen.h:16
#define ECMULT_GEN_PREC_N(bits)
Definition ecmult_gen.h:17
#define ECMULT_GEN_PREC_BITS
std::mt19937 & rng()
const secp256k1_ge_storage secp256k1_ecmult_gen_prec_table[ECMULT_GEN_PREC_N(ECMULT_GEN_PREC_BITS)][ECMULT_GEN_PREC_G(ECMULT_GEN_PREC_BITS)]
int add(int a, int b)
bool overflow
char * s
uint16_t j
memset(pInfo->slotDescription, ' ', 64)
memcpy((char *) pInfo->slotDescription, s, l)